

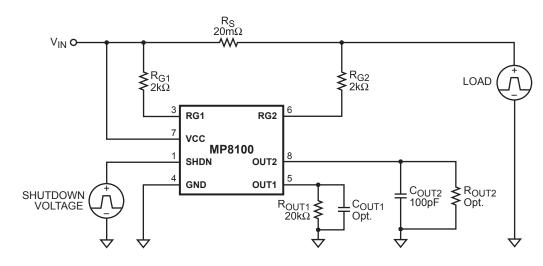
The Future of Analog IC Technology

DESCRIPTION

The MP8100 is a low-cost, precision, high-side current-sense amplifier. This device operates from a single 2.5V to 18V supply and typically consumes 12μ A. It is ideal for today's notebook computers, cell phones and other systems where battery/DC current monitoring is critical.

High-side current monitoring is especially useful in battery-powered systems since it does not interfere with the ground path of the battery charger. The input common-mode range of 1.5V to 18V is independent of the supply voltage and ensures that the current-sense feedback remains viable even when connected to a 2-cell battery pack in deep discharge.

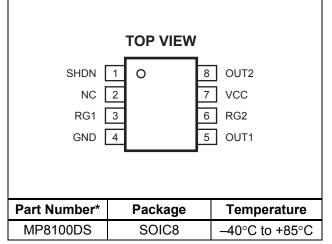
FEATURES


- Low-Cost, Compact Current-Sense Solution
- 12µA Typical Supply Current
- 2.5V to 18V Operating Supply Voltage
- 1.5V to 18V Input Common Mode Range
- 3µA Typical Shutdown Current
- 250µV Input Offset Voltage
- High Current Sensing Capability
- Low 100mΩ Output Impedance (Optional)
- Available in an 8-Pin SOIC Package

APPLICATIONS

- Portable PCs
- PDA's
- Smart Battery Packs
- Cell Phones
- Portable Test/Measurement Systems
- Battery-Operated Systems
- Energy Management Systems

"MPS" and "The Future of Analog IC Technology" are Trademarks of Monolithic Power Systems, Inc.


TYPICAL APPLICATION

MP8100 Rev. 0.92 9/21/2007 www.MonolithicPower.com MPS Proprietary Information. Unauthorized Photocopy and Duplication Prohibited. © 2007 MPS. All Rights Reserved.

PACKAGE REFERENCE

* For Tape & Reel, add suffix –Z (eg. MP8100DS–Z) For RoHS Compliant Packaging, add suffix –LF (eg. MP8100DS–LF–Z)

ELECTRICAL CHARACTERISTICS

 $V_{CC} = 10V$, $V_{SHDN} = 0V$, $T_A = +25^{\circ}C$, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Мах	Units
Supply Voltage	V _{cc}		2.5		18	V
Supply Current	I _{CC}	I _{LOAD} = 0A; V _{CC} = 18V		12	30	μA
OUT1 Input Offset Voltage	V _{OS1}			0.25	1.20	mV
OUT2 Input Offset Voltage	V _{OS2}			0.25	1.20	mV
Input Bias Current (4)	I _{RG1} , I _{RG2}			4		nA
OUT1 Current Accuracy	I _{RG1} /I _{OUT1}	V _{SENSE} = 100mV		±2		%
No-Load OUT1 Error		V _{SENSE} = 0V		1		μA
Low-Level OUT1 Error		V _{SENSE} = 5mV		2		μA
No-Load OUT2 Error		V _{SENSE} = 0V		1		μA
Low-Level OUT2 Error		V _{SENSE} = 5mV		2		μA
Power Supply Rejection Ratio	PSRR	2.5V < V _{CC} < 18V, V _{SENSE} = 100mV		0.05		%/V
Shutdown Supply Current	I _{CC(SHDN)}	V_{SHDN} = 3V, V_{CC} = 18V		3	5	μA
SHDN Threshold Voltage	V _{TH_SHUTDOWN}		0.7	1.0	1.8	V
SHDN Hysteresis				0.03		V
OUT1 Output Voltage Range	V _{OUT1}			V _{CC} – 0.15		V
OUT2 Output Voltage Range	V _{OUT2}			V _{CC} – 1		V

ABSOLUTE MAXIMUM RATINGS ⁽¹⁾

VCC, RG1, RG2 to GND0.3V to +20\					
Maximum Differential	Input	Voltage,	RG1	to	
RG2				5V	
Storage Temperature65°C to +150°C					

Recommended Operating Conditions ⁽²⁾					
V _{CC} , RG1, RG2 to GND					
Operating Temperature	–40°C to +85°C				

Thermal Resistance ⁽³⁾	•/1		
SOIC8	90	42	. °C/W
Continuous Power Dissipation	on		
(T _A =70°C)		8	00mW

Notes:

- 1) Exceeding these ratings may damage the device.
- The device is not guaranteed to function outside of its operating conditions.
- 3) Measured on approximately 1" square of 1 oz copper.

ELECTRICAL CHARACTERISTICS (continued)

 V_{CC} = 10V, V_{SHDN} = 0V, T_A = +25°C, unless otherwise noted.

Parameter	Symbol	Conditions	Min	Тур	Max	Units
OUT1 Rise, Fall Time ⁽⁴⁾	t _R	$V_{\text{SENSE}} = 40 \text{mV},$ $R_{\text{OUT1}} = 20 \text{k}\Omega,$ $R_{\text{OUT2}} = 100 \text{k}\Omega,$		17		μs
	t _F	$R_{G1} = R_{G2} = 2k\Omega,$ $C_{OUT1} = 100 \text{pF},$ $C_{OUT2} = 100 \text{pF}, 10\%$ to 90%		29		
OUT2 Rise, Fall Time ⁽⁴⁾	t _R	$V_{\text{SENSE}} = 40 \text{mV},$ $R_{\text{OUT1}} = 20 \text{k}\Omega,$ $R_{\text{OUT2}} = 100 \text{k}\Omega,$		18		μs
	t _F	$ \begin{array}{l} R_{G1} = R_{G2} = 2k\Omega, \\ C_{OUT1} = 100 pF, \\ C_{OUT2} = 100 pF, 10\% \text{ to } 90\% \end{array} $		26		
Maximum OUT1 Current (4)	I _{OUT1}			500		μA
Maximum OUT2 Current (4)	I _{OUT2}			5		mA

Notes:

4) Guaranteed by design.

5) Input common mode range cannot exceed the supply voltage.

PIN FUNCTIONS

Pin #	Name	Description
1	SHDN	Shutdown. Connect to ground for normal operation. When high, supply current is less than $5\mu A$.
2	NC	Not Connected.
3	RG1	Gain Resistor. Connect to battery side of current-sense resistor through the gain resistor.
4	GND	Ground or Battery Negative Terminal.
5	OUT1	Output For Driving Resistive Loads.
6	RG2	Gain Resistor. Connect to load side of current-sense resistor through the gain resistor.
7	VCC	Power Input. Connect to Battery Input.
8	OUT2	Output For Driving Capacitive Loads.

OPERATION

The MP8100 is a current-sense amplifier with a wide operating input voltage range of 2.5V to 18V.

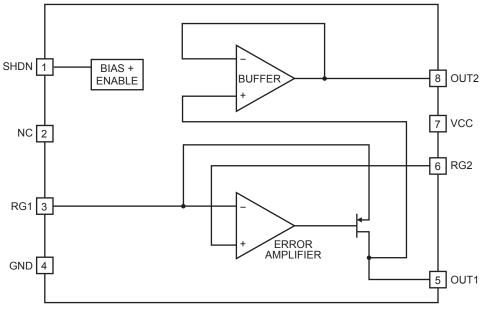
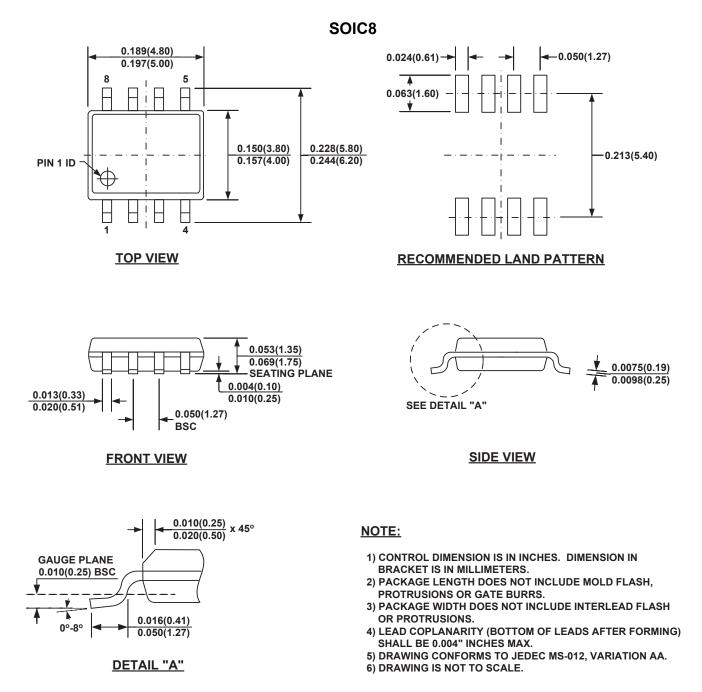


Figure 1—Functional Block Diagram

APPLICATION INFORMATION COMPONENT SELECTION

Table 1—Suggested Component Values

Full-Scale Load Current, I _{SENSE} (A)	Current Sense Resistor (mΩ)	Gain Setting Resistor (kΩ) (R _{G1} = R _{G2})	R _{oυτ1} (kΩ)	Gain
0.1	500	2	20	10
1	50	2	20	10
5	10	2	20	10
10	5	2	20	10


The value of V_{OUT1} can be obtained with the equation:

$$V_{OUT} = \frac{I_{L} \times R_{S} \times R_{OUT1}}{R_{G1}} = I_{L} \times R_{S} \times Gain$$

Where R_{G1} is the sense resistor and I_L is the load current.

PACKAGE INFORMATION

NOTICE: The information in this document is subject to change without notice. Users should warrant and guarantee that third party Intellectual Property rights are not infringed upon when integrating MPS products into any application. MPS will not assume any legal responsibility for any said applications.